A note on the Poisson boundary of lamplighter random walks
نویسنده
چکیده
The main goal of this paper is to determine the Poisson boundary of lamplighter random walks over a general class of discrete groups Γ endowed with a “rich” boundary. The starting point is the Strip Criterion of identification of the Poisson boundary for random walks on discrete groups due to Kaimanovich [16]. A geometrical method for constructing the strip as a subset of the lamplighter group Z2 ≀ Γ starting with a “smaller” strip in the group Γ is developed. Then, this method is applied to several classes of base groups Γ: groups with infinitely many ends, hyperbolic groups in the sense of Gromov, and Euclidean lattices. We show that under suitable hypothesis the Poisson boundary for a class of random walks on lamplighter groups is the space of infinite limit configurations.
منابع مشابه
The Poisson Boundary of Lamplighter Random Walks on Trees
Let Tq be the homogeneous tree with degree q + 1 ≥ 3 and G a finitely generated group whose Cayley graph is Tq. The associated lamplighter group is the wreath product Zr ≀ G, where Zr is the cyclic group of order r. For a large class of random walks on this group, we prove almost sure convergence to a natural geometric boundary. If the probability law governing the random walk has finite first ...
متن کاملPoisson Boundaries of Lamplighter Groups : Proof of the Kaimanovich - Vershik Conjecture
We answer positively a question of Kaimanovich and Vershik from 1979, showing that the final configuration of lamps for simple random walk on the lamplighter group over Z (d ≥ 3) is the Poisson boundary. For d ≥ 5, this had been shown earlier by Erschler (2011). We extend this to walks of more general types on more general groups.
متن کاملHarmonic analysis of finite lamplighter random walks
Recently, several papers have been devoted to the analysis of lamplighter random walks, in particular when the underlying graph is the infinite path Z. In the present paper, we develop a spectral analysis for lamplighter random walks on finite graphs. In the general case, we use the C2-symmetry to reduce the spectral computations to a series of eigenvalue problems on the underlying graph. In th...
متن کاملAcceleration of lamplighter random walks
Suppose we are given an infinite, finitely generated group G and a transient random walk with bounded range on the wreath product (Z/2Z) ≀ G, such that its projection on G is transient. This random walk can be interpreted as a lamplighter random walk, where there is a lamp at each element of G, which can be switched on and off, and a lamplighter walks along G and switches lamps randomly on and ...
متن کاملGreen kernel estimates and the full Martin boundary for random walks on lamplighter groups and Diestel–Leader graphs
We determine the precise asymptotic behaviour (in space) of the Green kernel of simple random walk with drift on the Diestel–Leader graph DL(q, r), where q, r 2. The latter is the horocyclic product of two homogeneous trees with respective degrees q + 1 and r + 1. When q = r , it is the Cayley graph of the wreath product (lamplighter group) Zq Z with respect to a natural set of generators. We d...
متن کامل